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Abstract

Global optimization problems are computationally intensive problems that arise
in many important applications. The solution of very large practical global opti-
mization problems, which may have thousands of variables and huge numbers of
local minimizers, is not yet possible. It will require efficient numerical algorithms
that take advantage of the properties of the particular application, as well as efficient
utilization of the fastest available computers, which will almost certainly be highly
parallel machines. This paper summarizes our research efforts in this direction.
First, we describe general purpose adaptive, asynchronous parallel stochastic global
optimization methods that we have developed, and our computational experience
with them. Second, we describe several alternative dynamic scheduling algorithms
that are required to control such dynamic parallel algorithms on distributed memory
multiprocessors, and compare their performance in the context of our parallel global
optimization methods. Third, we discuss the application and refinement of these
methods to global optimization problems arising from the structural optimization
of chemical molecules, and present preliminary computational results on some prob-
lems with between 15 and 100 variables. This work includes the development of new
algorithmic features that are motivated by the molecular configuration problem but
are applicable to a wider class of large scale, partially separable global optimization
problems.



1 Introduction

This paper summarizes the current status of a broad research program into parallel
algorithms for the global optimization problem, and applications of these algorithms.
The global optimization problem is to find the lowest minimizer of a nonlinear function
that has multiple local minimizers. We denote the problem by

minf:R R (1.1)
ZED

where D is some closed region in Rn. In this paper, we assume that the region D
is specified by a set of upper and lower bounds on the variables xi, and that the global
minimizer is in the interior of D. That is, the problem is assumed to be essentially
unconstrained with a region given that is known to contain the solution. We also assume
that f(x) is twice continuously differentiable, but do not assume any further properties
of f (X).

Global optimization problems arize in a variety of applications, including molecular
chemistry and many uses of parameter estimation. In general they are very difficult and
computationally expensive to solve. Partly for this reason, there has been a relatively
small amount of research into global optimization methods. Advances in both opti-
mization methods and computer technology are making the solution of practical global
optimization problems more tractable, however, thus encouraging research in this area.

Of particular importance, it is becoming increasingly clear that the most powerful
computers will be highly parallel computers, or networks of computers. Thus it is crucial
that research into methods for computationally intensive problems, such as global opti-
mization, includes consideration of the performance of these methods in highly parallel
computational environments. As will be discussed in this paper, this involves issues in
both numerical algorithms and computer science.

Our global optimization research has been based on a particular class of methods,
stochastic methods. Overall, a large and diverse array of approaches have been investi-
gated for solving the global optimization problem (1.1). First, many approaches exist
for cases where f(x) has special mathematical properties, such as concavity, but we
are concerned with the general case where f(x) can be any continuously differentiable
nonlinear function. Approaches that have been developed for this general case include
trajectory methods (e.g. (4, 1]), deflation and tunneling methods (e.g. [14, 25]), inter-
val arithmetic methods (e.g. (161), piecewise approximation methods (e.g. [33]), genetic
algorithms (e.g. (19, 3]), simulating annealing methods (e.g. [24]), and stochastic meth-
ods (e.g. (28]). Stochastic methods, as we use the term, combine random sampling of
the parameter space and the use of local minimization techniques. We have chosen this
class of methods because their modern versions appear to be at least as efficient as other
methods in the few comparisons that have been reported, because they are one of the
few types of the methods that possess some mathematical (probabilistic) guarantee of
success, and because they appear well suited for adaptation to highly parallel environ-
ments. The stochastic approach is described in the Section 2. An excellent survey of
global optimization methods for general nonlinear functions is contained in [29].

Our research in parallel global optimization began with the development of a parallel
version of existing stochastic methods. The limitations of these algorithms on both se-
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quential and parallel computers led us to develop adaptive and asynchronous algorithms
that appear to be more efficient in both sequential and parallel computing environments.
The challenges regarding the efficient implementation of these adaptive parallel algo-
rithms on highly parallel computers led to accompanying research into dynamic schedul-
ing strategies for adaptive, asynchronous parallel algorithms, with the global optimization
problem used as the primary example. Finally, we have recently begun to consider the ap-
plication of stochastic methods to large scale global optimization problems, say problems
with 20 to 1000 variables. This includes the development of new numerical algorithms.
This research has been largely motivated by the molecular configuration problem.

The remainder of this paper summarizes the results to date of this ongoing research
program. Section 2 discusses the research into parallel stochastic global optimization
methods, focusing on the adaptive, asynchronous approach. Section 3 describes the
work on scheduling strategies for dynamic parallel algorithms. Section 4 discusses the
adaptation of parallel stochastic methods to solve large scale molecular configuration
problems, including preliminary test results on some problems with 15 to 100 variables.
More detailed descriptions of most of the work discussed in Sections 2 and 3 can be found
in [6, 35, 36, 34].

2 Parallel Stochastic Global Optimization Methods

The parallel global optimization methods that we have developed derive from the stochas-
tic methods of Rinnooy Kan and Timmer [28]. The basic framework of these stochastic
methods is as follows. First they sample the objective function at a number of randomly
chosen points in the feasible region (typically 100-1000 points per iteration). Next they
select a subset of tnese sample points to be start points for local minimizations. Then
they perform a local minimization algorithm from each start point. Finally they decide
whether to terminate the algorithm, in which case the local minimizer with the lowest
function value is considered to be the global minimizer, or they perform another iteration
of this process, adding the new sample points to the previous ones. Rinnooy Kan and
Timmer have proven that if such a procedure uses properly chosen rules for choosing
start points, then with probability one it will find the global minimizer while doing only
a finite amount of work.

Several aspects of the sequential method merit description in more detail. First,
after conducting the random sampling, the methods generally discard all but a fixed
percentage (say 20%) of the sample points, keeping only those points that have function
values below a correspondingly selected "cutoff level". This refinment does not affect the
theoretical properties of the method but significantly improves its computational perfor-
mance. It is important to mention because it has important ramifications to the parallel
methods. Second, the method for selecting start points for the local minimizations is
crucial to the theoretical properties of the methods and also has important consequences
to the parallel methods. Only the sample points below the cutoff level are considered
in this phase. From them, a sample point is selected as a start point if it has a lower
function value than all sample points within a prescribed "critical distance" from it. This
critical distance is given by a formula related to the probabilstic analysis of the method,
and is a monotonically decreasing function of the iteration number. Finally, the local
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minimization method is a state-of-the-art algorithm; our implementations use the BFGS
method from the UNCMIN package of Schnabel, Koontz, and Weiss [31].

Byrd, Dert, Rinnooy Kan, and Schnabel [6] developed a static, synchronous parallel
version of this algorithm. It divides the domain space into P equal subregions, where P
is the number of available processors. Each processor independently conducts sampling
in the subregion it has been assigned, and then selects candidate start points from among
its sample points, using the procedure described above but considering only the sample
points in its subregion. The processors then synchronize and check, for any candidate
start point within the critical distance of a subregion boundary, whether there is a lower
sample point within the critical distance of it in some neighboring subregion. If so, the
candidate start point is eliminated as a start point. Local minimizations are performed
from the remaining start points. These start points may not be equally distributed among
the subregions, so they are collected centrally and then distributed to the processors,
which perform the local minimizations. If there are more start points than processors,
initially one start point is distributed to each processor, and the remaining start points
are distributed to processors as they finish their current local minimizations. When all
the local minimizations have completed, the processors synchronize again in order to
determine whether the stopping conditions have been satisfied and if not, the process is
repeated. We refer to the methods as static because the method of subdividing the domain
is fixed, and as synchronous because of the synchronization points at each iteration.

Byrd, Dert, Rinnooy Kan, and Schnabel [6] report test results of this parallel al-
gorithm on a network of 4 or 8 computer workstations, using the standard set of very
small test problems from [7]. While many of the speedup results were reasonably good,
these experiments illuminated some important performance problems with the parallel
approach. In particular, two aspects of the algorithm commonly led to load balancing
problems, situations where some processors were idle while waiting for other processors
to complete their tasks and reach a common synchronization point. The first was in the
start point selection computation. The elimination of all sample points with function val-
ues above the cutoff level often left widely varying numbers of sample points in different
subregions, causing the time for candidate start point selection to vary greatly between
processors. This caused some processors to wait for others at the synchronization point
that immediately followed this stage. Secondly, the local minimizations often had widely
varying computation times, and the number of minimizations conducted often was too
small to spread the load evenly among the processors. Consequently different proces-
sors often had widely differing amounts of work in the local minimization part of the
computation.

The development and testing of the static, synchronous parallel algorithm also height-
ened ouir awareness of another problem with the underlying stochastic method that is
independent of whether sequential or parallel computation is used. It is that the static
algorithm can be inefficient for problems that have low local minimizers unevenly concen-
trated in the domain space. This is because the algorithm always does an equal amount
of sampling in all areas of the domain space, even though there may appear to be a
greater potential for finding the global minimizer in some portions of the domain than
others. While this problem is common to sequential and parallel versions of the stochas-
tic method, it was the consideration of decomposing the domain into subregions, which
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only is done in the parallel version, that led us to consider alternatives.
To address both of these problems, namely lack of adaptivity by the algorithm to the

problem being solved, and poor load balance in the parallel version, we have developed
adaptive, asynchronous parallel (and sequential) stochastic global optimization methods.
By adaptive methods we mean methods that react to the current state of the computa-
tion by attempting to focus computation on the part of the problem where this seems
most fruitful. By asynchronous parallel algorithms we mean algorithms that allow each
processor to proceed, as much as possible, independently of the other processors.

The general framework of our adaptive, asynchronous stochastic methods is given in
Algorithm 2.1. There are two key distinctions between this algorithm and the previous
sequential or parallel methods. First, rather than taking a global view of the computation,
the algorithm is viewed as a set of separate subregion and minimization tasks that mainly
operate independently of each other. This leads to a local, subregion-based view of
the algorithm, and also leads naturally to an asynchronous parallel implementation.
This change also requires that mechanisms be provided for scheduling these tasks and
terminating the algorithm. Secondly, in step 3, each subregion determines adaptively
at each iteration how much attention should be devoted to this subregion at the next
iteration. The composition of these decisions forms the overall adaptive algorithm. In
the next few paragraphs we describe some of the key aspects of these adaptive and
asynchronous portions of the algorithm. More detailed discussions are given in [36] and
[34].

Algorithm 2.1 - Framework of an Adaptive, Parallel Global Optimization
Algorithm

Given f : R' - R, feasible region D, p processors

Partition D into q > p subregions

For each subregion

1. Sampling : Generate the coordinates of the new random sample points in the subre-
gion, and evaluate f(z) at each new sample point. Discard all sample points whose
function value is below the global "cutoff level".

2. Start Point Selection : Select a subset of the sample points to be start points for
local minimizations. (A sample point is selected to be a start point if it has the
lowest function value of all sample points within the "critical distance" from it;
special techniques are used for sample points near subregion boundaries.)

3. Adaptive Decisions : Decide whether to split this subregion into smaller sub-
regions, what the new density of sample points for the subregion(s) should be, and
the relative priority of continuing to process this subregion. Then apply this algo-
rithm recursively to each of the new subregions as processors become available and
as its priority prescribes. (Generally this will be done after the local minimizations
in step 4.)
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4. Local Minimizations : As processors become available, perform, on some proces-
sor, a local minimization from each start point selected in step 2.

Note : For each subregion and iteration, steps 1-3 constitute a single task, called a
"subregion task", and each local minimization in step 4 constitutes a single "local
minimization task". The scheduling of the tasks in parallel may be controlled in a
centralized or distributed manner. A central process generally controls termination
of the entire algorithm.

There are two key issues regarding the adaptive decisions in Algorithm 2.1. First, how
does one identify subregions that should be given more emphasis in the computation? The
goal is to emphasize subregions that are likely to contain undiscovered low minimizers.
We have experimented with several heuristics, and among these, the most effective has
been to emphasize subregions where the fraction of sample points with function values
below the cutoff level is high. We call these "productive subregions"; regions where this
fraction is particularly low are called "unproductive subregions". The second issue is, how
does one redistribute the work so that more of the computational power is concentrated
upon productive subregions? Here we have found that a combination of three heuristics
is effective. First, we increase the sample size per iteration in productive subregions and
decrease it in unproductive subregions, but not below some fixed lowest density. Second,
if the sample size exceeds some upper bound we split the subregion into two subregions.
Third, if the region is unproductive but the sample size can not be further decreased, we
delay processing this subregion for one or more global iteration. Note that the net effect
of these heuristics is to emphasize productive subregions, and to keep the work in the
subregion tasks reasonably even.

There are also several important issues related to the asynchronous nature of the
algorithm, and we only briefly describe the two main ones here. They are how tasks are
scheduled among processors, and how the entire algorithm is terminated. One key aspect
of scheduling is determining priorities among all the subregion and local minimization
tasks. We note that each task still contains an iteration number that is determined in
analogy to the sequential method. If multiple tasks are available to be processed, tasks
from a lower numbered iteration are scheduled before tasks from a higher numbered
iteration, and subregion tasks from a given iteration are scheduled before minimization
tasks from the same iteration. The other key aspect of scheduling is how information
regarding available tasks and processors is maintained and utilized. This turns out to be
of great importance to the scalability of these methods, and is a considerable research
topic of its own. It is discussed slightly later in this section, and is then the subject of
Section 3.

Determining when to stop the asynchronous algorithm is somewhat complex, but the
basic idea is that a central process determines when all tasks from an iteration have
been completed, and then applies the termination criteria. Note that some tasks from
succeeding iterations may already have executed at the point the algorithm is stopped.
This appears to be the main penalty one pays in return for the improved load balancing
in the asynchronous method.



We have implemented an adaptive, asynchronous parallel stochastic algorithm, based
upon Algorithm 2.1 and the above discussion, on a network of Sun workstations. The
initial version of this algorithm used a centralized scheduling mechanism that operates
as follows. A single, separate scheduler process exists, and is informed of all tasks that
are ready to be scheduled, and of all processors that have completed their last-assigned
task. It then assigns the tasks to the processors using the criteria described above.

Smith and Schnabel [361 and Smith [341 report results using this algorithm. They use
eight workstations for the worker processes (subregions and minimizations), and place the
scheduler on a ninth workstation. Their experiments are on a single, artificial test problem
that is constructed to be indicative of difficult problems with uneven concentrations
of minimizers. The test problem has 2 variables and 46 local minimizers; the regions
of attraction of the two highest (i.e. worst) local minimizers are contiguous and each
constitute 25% of the domain D, whereas the regions of attraction of the 32 lowest iocal
minimizers also form a contiguous subregion and each constitute 0.39% of the domain.
The test problem was run with several different algorithmic configurations, corresponding
to differing numbers of initial subregions and different initial sampling densities. The tests
were run on all four combinations of static and adaptive, synchronous and asynchronous
methods. Due to the stochastic nature of the algorithm, each problem-algorithm pair
was run ten times.

Table 1 summarizes the results of these experiments for two typical versions of the test
problem. In summary, the results indicate that the adaptive algorithm is considerably
faster than the static algorithm on this type of problem, while the improvement in going
from a synchronous to an asynchronous method is smaller, especially for the adaptive
methods. Overdl, the adaptive, asynchronous algorithm was between 1.5 and 7 times
as fast as the static, synchronous algorithm in these tests. In addition, it achieved a
speedup between of 6 and 7 over a sequential version of the adaptive algorithm in all of
these cases. While 9 processors were used in the parallel method, the processor dedicated
to the centralized scheduler never had a utilization of more than 12%, indicating that
tht overall parallel efficiency of the parallel algorithm was over 70%.

These experiments indicate that the adaptive versions of the stochastic methods can
lead to significant improvements over the static stochastic methods, and that the adap-
tive, asynchronous parallel algorithm that was implemented can be expected to achieve
good parallel efficiency for a small number of pricessors. Our experiences with tb. e
methods also indicated two problems with them that motivate the remainder of this
paper. First, it seems clear that the centralized scheduler that was used in the initial
parallel implementation will become a bottleneck as the number of processors is increased.
The research described in Section 3 confirms this, and investigates alternative scheduling
mechanisms within the context of the same adaptive, asynchronous global optimization
method. Second, it seems likely that these methods will not be sufficient to solve large
scale problems efficiently. In particular, it seems likely that their adaptive heuristics may
be too general to focus attention on small, productive subregions of large dimensional
domains quickly and tightly enough, and that the costs of sampling and minimizing
in large dimensional spaces may become prohibitive. Section 4 describes some initial
research that is aimed at modifying these methods to overcome these problems.
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Table 2.1: Performance Comparison of Parallel Algorithms
density = 1000, Static Static Adapt Adapt
8 subregions Synch Asynch Synch Asynch
total number of iterations 8.6 7 6.5 6.1
total sample density 8383 8532 4026 3963
total number of local searches 39.6 46 47 53
total function evals 9186 9474 4966 5055
fnc eval improvement over static

synch - -3% 46% 45%

computation time 23:19 15:01 4:10 3:25
time improvement over static

synch - 35% 82% 85%

density = 1000, Static Static Adapt Adapt
16 subregions Synch Asynch Synch Asynch
total number of iterations 5.6 5.7 5.4 5.7
total sample size 5891 5010 3048 3369
total number of local searches 69.9 81.5 45 69
total function evals 7341 6697 3976 4788
fnc eval improvement over static

synch 9% 46% 35%
computation time 5:04 5:10 3:33 3:23
time improvement over static

synch - -2% 30% 33%

3 Dynamic Scheduling of Parallel Global Optimization
Algorithms

As discussed ii Section 2, effective parallel stochastic global optimization algorithms
generate tasks dynamically, and these tasks take varying amounts of time to execute.
Thus it is not possible to determine a priori how to distribute the tasks among the
processors to achieve good load balance, something that is possible for many simpler
parallel numerical algorithms. Instead, some scheduling strategy must be used to keep
track of the available tasks and processors as the algorithms proceeds, and to determine
which tasks are to be executed by which processors in what order. We will refer to this
as a dynamic scheduling strategy. The dual goals of any such strategy are to distribute
the workload fairly evenly among the processors, and to keep the overhead cost of the
scheduling computations as low as possible. Ideally, the dynamic scheduling strategy
should be effective for a wide range of problem and parallel machine sizes.

In the case when the tasks are independent, the problem of dynamic scheduling has
been addressed by a number of research projects in the computer science community
(e.g. (10], [20], [26], [301). On the other hand, little work has been done concerning
dynamic scheduling of tasks that arise from the same application. We have investigated
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this problem extensively, in the context of the parallel stochastic global optimization
methods discussed in Section 2. This research has considered several dynamic scheduling
approaches, including a centralized scheduler, two distributed scheduling strategies, and
an approach that we term centralized mediator. In this section we will discuss these
strategies briefly, and summarize the results of using them in the context of our parallel
stochastic global optimization method. This research is described in far more detail in
[341, and in preliminary form in [36].

The centralized scheduler strategy is the most straightforward. A master scheduling
process keeps a priority queue of the tasks that are ready to execute, and sends tasks one
at a time to the other, worker processes. Whenever a worker process finishes executing
a task, it informs the master scheduler of this and in conjunction sends it any new tasks
that it has created. The master scheduling process then sends it a new task to execute.

Centralized scheduling has been used in a variety of contexts on shared and distributed
memory parallel computers, such as [8] and [22]. Its main advantages are the simplicity
of implementation, and that the complete information possessed by the scheduler allows
for good load balancing. The obvious disadvantage is that the scheduler can become a
bottleneck as the number of processors increases or the granularity of tasks decreases.

Distributed scheduling strategies take essentially the opposite approach to centralized
scheduling. Each processor maintains a local queue of tasks that are ready to execute,
and schedules tasks to run from this queue if possible. If its workload becomes too
heavy or too light, however, it tries to distribute tasks to other processors or obtain tasks
from other processors. This is done in one of two ways. In a receiver-initiated strategy,
processors that need more work request it from other processors. In a sender-initiated
strategy, processors that have too much work offer excess tasks to other processors. In
either case, the interaction is directly between processors, with no centralized control.

Distributed scheduling strategies have been investigated both in the context of sys-
tems where the tasks are independent (e.g. [10]), and where they are dependent (e.g.
[12), [21)). In comparison to centralized strategies, they possess less complete information
and thus may result in poorer load balancing, but the cost of scheduling should be far
lower as the scheduling workload increases. On the other hand. there is a potential for
O(P 2 ) communication, where P is the number of processors, which may also become a
problem as P becomes large.

The centralized mediator strategy combines aspects of both the centralized scheduler
and distributed scheduling strategies. As in the distributed scheduling strategies, each
processor maintains a local queue of tasks that are ready to execute, and schedules tasks
to run from this queue if possible. When its workload becomes too heavy or light,
however, rather than interacting directly with other processors, it sends requests or extra
tasks to a centralized mediator process. This process then matches tasks to requests and
sends tasks to the processors that requested them.

The centralized mediator strategy is a new contribution of our research, although
related strategies have been used in some considerably different contexts such as [2] and
(23]. In comparison to the centralized scheduler strategy, the scheduler should be far
less of a bottleneck since it only handles a far number of tasks, namely those that the
processors can not handle locally. In comparison to distributed scheduling strategies, it
may be able to distribute tasks more evenly since there is some central information, and
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it appears easier to implement. On the other hand, the centralized mediator process can
still be expected to become a bottleneck eventually as the number of processors grows,
and it is not clear how the scheduling overhead will compare to distributed scheduling
strategies.

Smith [14] has conducted an extensive study of these dynamic scheduling strate-
gies in the context of the adaptive, asynchronous, parallel stochastic global optimization
methods described in Section 2. This study utilized a combination ot analytic modeling,
discrete event simulation, and parallel implementation. Analytic models of the central-
ized scheduler and centralized mediation strategies were used to identify likely bottleneck
points to be investigated in the subsequent experiments. Discrete event simulations, us-
ing traces from the parallel centralized scheduler implementation discussed in Section 2,
were used to examine the performance of all three scheduling strategies under a variety
of workloads and for various numbers of processors. Parallel implementations of both the
centralized scheduler and centralized mediator strategies on a network of 8 Sun work-
stations (plus one for the scheduler) were used to validate the results of the simulations
and to perform further comparisons. They demonstrated that the differences between
the implementation and the simulation results were small (ranging from 3% to 13%) and
not statistically significant. In this section we summarize the simulation results, since
they provide the broadest comparison of the dynamic scheduling strategies.

The simulations examined cases when there were 8, 16, 32, and 64 processors, and
where the numbers of tasks created are small, medium, and large. They considered three
versions of the global optimization problem used in the experiments discussed in Section 2,
and used the adaptive asynchronous parallel algorithm described in that section. For each
combination of number of processors, task workload, and initial algorithm configuration,
10 traces corresponding to ten different runs of the implemented method again were used,
to minimize the effects of the stochastic nature of the algorithm.

In comparing the centralized scheduler strategy to the centralized mediator, the cen-
tralized scheduler was advantageous only when there were 8 processors and a small num-
ber of tasks. When there were 32 or 64 processors, the global optimization algorithm
using the centralized mediator strategy always executed faster than the algorithm us-
ing the centralized scheduling strategy, for all workloads, with performance gains in the
ranges of 22-64% and 53-777 respectively. In these cases, the centralized scheduler clearly
became a bottleneck; for 64 processors the utilization of the scheduler process generally
was 94%-99%. The utilization 3f the centralized mediator process was generally in the
range of 50%-70% for 64 processors, indicating that it too would become a bottleneck for
even larger numbers of processors.

In the comparison between the centralized mediator and distributed scheduling strate-
gies, we utilized the received-initiated version of distributed scheduling since it appeared
to be more efficient than the sender-initiated version in our preliminary tests. In all pro-
cessor number, task workload, and initial algorithm configuration scenarios, the mean
computation time of the centralized mediator version of the algorithm was less than the
mean computation time of the distributed scheduling version. The differences in mean
computation time were only statistically significant in fewer than half of these cases,
however, mainly involving 32 and 64 processors. The gains in mean computation time
by the centralized mediator ranged up to 28%.
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These experiments indicate that, for the situations studied, the centralized mediator
strategy is a robust and efficient dynamic scheduling strategy. It generally led to the
lowest overall run time, and it never was far from optimal. For sufficiently large numbers
of processors, however, it likely would be necessary to consider hierarchical versions of
this strategy.

4 Solving Molecular Configuration Problems by Parallel
Stochastic Global Optimization Methods

Recently, we have begun applying parallel stochastic global optimization methods to
problems that arise from determining the structure of chemical systems. Many problems
of this type lead to optimization problems because the naturally occurring structure
minimizes, or nearly minimizes, the potential energy of the system or more complex
energy measures. Commonly these energy functions have many local minimizers, so
that it is necessary to solve a global optimization problem to determine the structure of
interest. For general references on this subject, see e.g. [27] or [5].

The class of problems we have considered so far is to determine the configuration
of molecules whose potential energy function is given by the sum of all the pairwise
interactions between the atoms in the molecule, where these interactions are assumed
to be VanderWaal's forces that are given by the Lennard-Jones 6-12 potential energy
function. That is, if we define

= (XI, X21... I m)

where each z is a vector denoting the coordinates of the iih atom, then the potential
energy function is

m ( 1- (4.1)
:=1 j---+12

where dij is the weighted Euclidean distance between atoms i and j. The weighted
Euclidean distance is the standard Euclidean distance divided by a scalar that depends
upon the sizes of atoms i and j. In the simplest case of the problem where all the atoms
are identical, dii is the unweighted Euclidean distance. The potential energy function
(4.1) is spherically symmetric, and thus is reasonable for inert atoms. The constant W
can be chosen arbitrarily and determines the scaling of the problem; [9] uses w = 1 (and
multiplies (4.1) by 4) whereas [32] uses w = 2. We will use the same values as they do
when we compare to their respective test problems and results.

Problems of the above form that are of practical interest may involve from hundreds to
tens of thousands of atoms in three dimensional space. From the study of such problems
with relatively small numbers of atoms, it is known that the number of local minimizers
grows very rapidly with m. In fact, [17] has conjectured that the number of local mini-
mizers is O(em2). Furthermore, many of the local minimizers have function values that
are near the global minimum function value (these minimizers come from repositioning
of one or a few of the outermost atoms of the molecule), and each of these minimizers
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has a small basin of attraction within the space of all possible configurations. For these
reasons, these are very challenging global optimization problems. To our knowledge, only
problems with relatively small numbers of atoms (typically 10-50 atoms in three dimen-
sional space) have been j.onsidered so far, generally by methods that combine knowledge
of chemical structures and optimization techniques. Even this number of parameters is
one to two more orders of magnitude greater than the 2-6 parameter test problems that
have been used in the general global optimization literature.

Our approach to solving these molecular configuration problems has been to use the
general stochastic global optimization approach discussed in Section 2, with substantial
modifications that make these algorithms suitable for solving large scale problems that
have a special structure. In particular, (4.1) is an example of a partially separable func-
tion, one where the objective function is the sum of many terms, each of which involves
only a small subset of the variables. Partially separable problems have been studied ex-
tensively in local optimization (see e.g. [15]), and it is felt that many, possible most large
scale optimization problems have this form. Our approach is to develop a class of global
optimization methods that is applicable to any large scale, partially separable function.
Thus we do not use specific knowledge of molecular chemistry within our algorithms,
rather we use such knowledge to aid us in constructing algorithmic techniques that are
appropriate for any partially separable problem.

When one considers applying the class of methods described in Section 2 to find the
global minimizer of functions of the form (4.1) with reasonably large m, there are two
immediate challenges. These challenges are likely to be present for many other large
scale problems as well. The first is how to efficiently locate sample points within the
large-dimensional parameter space that will be good starting points for local minimiza-
tions. This is particularly difficult for the molecular configuration problem (4.1) because
the value of f(x) at randomly chosen sample points is usually 10-20 orders of magni-
tude higher than the optimal function values. (Again, we are assuming we do not use
knowledge from molecular chemistry in determining good initial configurations.) The
second challenge is how to find the global minimizer from among the many low local
minimizers. In particular, one would like to be able to progress efficiently from one low
local minimizer to an even lower one.

The main new technique that we have used so far to address these challenges is to
restrict the stochastic global optimization algorithm to carefully chosen small dimensional
subproblems at key junctures in the overall full dimensional method. We currently do this
in two places, sampling and improvement of local minimizers. These correspond to the
two main challenges described above.

The modified sampling phase begins as usual by sampling in the full dimensional
parameter space, and discarding all but the lowest small fraction of the sample points.
For each remaining sample point we then do the following. First we determine which atom
contributes the most to the objective function value (4.1). This determination is easily
made by summing the terms involving each atom, and it generalizes to other partially
separable functions although perhaps in a application specific manner. Then we sample
on just this atom (around its current value) and replace the current value of this atom
with the new sample value of the atom that leads to the lowest new function value for this
sample point. Finally this process is repeated a number of times, i.e. we select the atom
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that contributes the most to the function value of the revised sample point (generally this
will be a different atom), sample on this atom, replace it, and continue this process. We
stop when the function value of the molecule falls below some predetermined threshhold
or when the energy contribution of the worst atom falls below a second threshhold.

Generally this process reduces the function values of the sample points by many
orders of magnitude. From these sample points, we determine start points for local
minimizations as usual. The most important consequence of using this modified sampling
procedure is that the local minimizations from the start points selected from these revised
sample points generally lead to far better local minimizers than minimizations from start
points selected from the original sample points. The second key point about the modified
sampling procedure is that its cost is very low. The cost of sampling on one atom is L
times the cost of sampling in the full space, and the cost of re-evaluating (4.1) when
one atom is perturbed is about 1 times the cost of evaluating (4.1) in general. Finally,
these techniques and savings generalize to any partially separable problem, although the
determination of which variable(s) contributes most to the objective function may be
application dependent.

The second place where we apply the technique of considering small dimensional
subproblems is in the improvement of local minimizers. First we produce local minimizers
as usual from the start points generated from the modified sample points. Then we apply
the following procedure to each of the k lowest local minimizers. We again select the
atom that contributes the most to the energy of the local minimizer, as was done in
the modified sampling phase. Then we apply the adaptive global optimization algorithm
described in Section 4 to this minimizer using the energy function (4.1) and only this
atom as a variable. This is a three variable global optimization problem (assuming the
problem is in three dimensional space). It results in the identification of various local
minimizers for the three variable problem, i.e. several new positions for this atom within
this configuration of the molecule. Next we take the two positions of this atom with the
lowest function values (assuming neither is the original position of the atom), and apply
local minimizations in the full parameter space to these configurations. This generally
results in the identification of new local minimizers for the full problem. Finally we repeat
this process some number of times, starting from the lowest new minimizer to which this
procedure has not already been applied.

We have found this procedure to be very effective in locating improved local mini-
mizers, in cases where simply doing more sampling and searching in the full parameter
space was not productive. Again, its cost is very low. The global optimization algorithm
applied to the problem where just one atom is a variable is inexpensive because of the
small parameter space and the greatly reduced cost of evaluating the energy function.
The subsequent local minimization: in the full parameter space generally require very
few iterations and so they also are inexpensive. Finally, this step also generalizes to
any partially separable problem, although again the determination of which variable(s)
contributes most to the objective function may be application dependent.

The structure of the resultant global optimization algorithm that we use for solving
molecular configurations problems is given in Algorithm 4.1. For simplicity we describe
a sequential version of the algorithm even though in practice we have used a parallel
variant of it.
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Algorithm 4.1 - Framework of a Stochastic Global Optimization Algorithm
for Large Scale Molecular Configuration Problems

Given f : R n - R, feasible region D

1. Sampling in Full Domain : Generate the coordinates of the sample points in the
region D, and evaluate f(x) at each new sample point. Discard all sample points
whose function value is below a global "cutoff level".

2. One-atom Sampling Improvement : For each remaining sample point : Select
the atom that contributes most to the energy function, sample on it, and replace
this atom with the sample value that gives the lowest energy. Repeat this process
for each sample point until its energy is below some threshhold.

3. Start Point Selection : Select a subset of the sample points to be start points
for local minimizations.

4. Full-Dimensional Local Minimizations : Perform a local minimization from
each start point selected in step 2.

5. Improvement of Local Minimizers : For each of the lowest k local minimizers
: Select the atom that contributes most to the energy function, and apply a global
optimization algorithm to this configuration with only this atom as a variable. Then
apply a local minimization procedure, using all the atoms as variables, to the lowest
configuration(s) that resulted from each the one-atom global optimization. Repeat
this one-atom global optimization / full-molecule local minimization process some
number of times from new low minimizers.

We have applied this algorithm to the function (4.1), with w = 2 and dij the Euclidean
distance in three dimensional space, in the cases m = 5, ... , 27. (i.e. 15 to 81 parameters).

These problems have been studied extensively by chemists and bio-chemists; see e.g.
(18], [13], [111, [37], and [32]. Shalloway [321 presents a new "packet annealing" global
optimization method that is designed to solve this type of problem, and presents test
results for the cases m = 5, ..., 24. His algorithm finds the best known minimizer in 14 of

the 20 cases (all but m = 8, 16, 17, 18, 23, and 24). Our algorithm finds the lowest known
minimizer in all cases except m = 22, where it finds a lower minimizer than the previously
known lowest minimizer for this case. This new configuration is a double icosahedron
(19 atoms) plus three additional atoms that are asymmetrically placed, two adjoining
the middle of the three pentagonal groups of atoms in the double icosahedron and the
third adjoining either the top or bottom pentagonal group. Its function value is -86.8097
as compared to -86.148 for the lowest previously known minimizer. In each of the cases
m = 25, 26, 27 we find the lowest minimizer reported in [18]; to our knowledge these are
the lowest known minimizers for these problems. On many of these test problems, both
of the one-atom modifications described above, to sampling and local minimization, were

crucial in obtaining these results.
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We have also applied our algorithm to the version of function (4.1) where w = 1
and dii is the Euclidean distance in two dimensional space, as has been considered by
(9]. (The function (4.1) also is multiplied by 4.) In the case where m = 50, i.e, 100
parameters, we obtained a lowest potential energy of -137.3, whereas the lowest potential
energy we obtained with the code reported in [9] was -135.4.

This research is still at a very early stage. While the above results indicate that
the approach of Algorithm 4.1 is promising, problems that chemists and bio-chemists
really want to solve will be far more challenging than the above test problems. They will
have far more atoms, the atoms will not be identical, and the energy functions may be
more complex. Correspondingly, there are many techniques that could be considered for
adapting stochastic global optimization methods to solve these problems. The simplest
moJification of what we have described is to perturb not one atom, but some small
number of atoms, in the low-dimensional sampling and minimization phases. This may
be particularly important for molecules that are composed of several different types of
atoms. Our future research will consider this possibility, as well as many other new
algorithmic features. These may include some techniques that are particular to the
molecular configuration problem. In conjunction the research will continue to consider
the parallelization of the best algorithms, since it is clear that the solution of real, large
problems will require massive amounts of computation and thus will need to utilize the
fastest computers, which will almost certainly be massively parallel.
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